bg_image
header

Aspect Oriented Programming - AOP

Aspect-Oriented Programming (AOP) is a programming paradigm focused on modularizing cross-cutting concerns—aspects of a program that affect multiple parts of the codebase and don't fit neatly into object-oriented or functional structures.


💡 Goal:

Typical cross-cutting concerns include logging, security checks, error handling, transaction management, or performance monitoring. These concerns often appear in many classes and methods. AOP allows you to write such logic once and have it automatically applied where needed.


🔧 Key Concepts:

  • Aspect: A module that encapsulates a cross-cutting concern.

  • Advice: The actual code to be executed (e.g., before, after, or around a method call).

  • Join Point: A point in the program flow where an aspect can be applied (e.g., method execution).

  • Pointcut: A rule that defines which join points are affected (e.g., "all methods in class X").

  • Weaving: The process of combining aspects with the main program code—at compile-time, load-time, or runtime.


🛠 Example (Java with Spring AOP):

@Aspect
public class LoggingAspect {
    @Before("execution(* com.example.service.*.*(..))")
    public void logBeforeMethod(JoinPoint joinPoint) {
        System.out.println("Calling method: " + joinPoint.getSignature().getName());
    }
}

This code automatically logs a message before any method in the com.example.service package is executed.


✅ Benefits:

  • Improved modularity

  • Reduced code duplication

  • Clear separation of business logic and system-level concerns


❌ Drawbacks:

  • Can reduce readability (the flow isn't always obvious)

  • Debugging can become more complex

  • Often depends on specific frameworks (e.g., Spring, AspectJ)


Assertion

Assertions are programming constructs used to check assumptions about the state of a program. An assertion tests whether a specific condition is true—if it isn't, an error is typically raised and the program stops.

x = 10
assert x > 0   # passes
assert x < 5   # raises AssertionError, since x is not less than 5

Purpose of Assertions:

  • They help with debugging: you can verify that certain conditions in code hold true during development.

  • They document implicit assumptions, e.g., “At this point, the list must have at least one item.”

  • They are mainly used during development—assertions are often disabled in production code.

Key Difference from Regular Error Handling:

Assertions are meant to catch programmer errors, not user input or external failures. For example:

  • assert age > 0 → inappropriate if age comes from user input.

  • Instead, use: if age <= 0: raise ValueError("Age must be positive.")

 


Design by Contract - DbC

Design by Contract (DbC) is a concept in software development introduced by Bertrand Meyer. It describes a method to ensure the correctness and reliability of software by defining clear "contracts" between different components (e.g., methods, classes).

Core Principles of Design by Contract

In DbC, every software component is treated as a contract party with certain obligations and guarantees:

  1. Preconditions
    Conditions that must be true before a method or function can execute correctly.
    → Responsibility of the caller.

  2. Postconditions
    Conditions that must be true after the execution of a method or function.
    → Responsibility of the method/function.

  3. Invariant (Class Invariant)
    Conditions that must always remain true throughout the lifetime of an object.
    → Responsibility of both the method and the caller.

Goal of Design by Contract

  • Clear specification of responsibilities.

  • More robust and testable software.

  • Errors are detected early (e.g., through contract violations).

Example in Pseudocode

class BankAccount {
    private double balance;

    // Invariant: balance >= 0

    void withdraw(double amount) {
        // Precondition: amount > 0 && amount <= balance
        if (amount <= 0 || amount > balance) throw new IllegalArgumentException();

        balance -= amount;

        // Postcondition: balance has been reduced by amount
    }
}

Benefits

  • Clear contracts reduce misunderstandings.

  • Easier debugging, as violations are detected immediately.

  • Supports defensive programming.

Drawbacks


Perl Compatible Regular Expressions - PCRE

Perl Compatible Regular Expressions (PCRE) are a type of regular expression syntax and engine that follows the powerful and flexible style of the Perl programming language. They offer advanced features that go beyond the basic regular expressions found in many older systems.


Why "Perl Compatible"?

Perl was one of the first languages to introduce highly expressive regular expressions. The PCRE library was created to bring those capabilities to other programming languages and tools, including:

  • PHP

  • Python (similar via the re module)

  • JavaScript (with slight differences)

  • pcregrep (a grep version supporting PCRE)

  • Editors like VS Code, Sublime Text, etc.


Key Features of PCRE:

Lookahead & Lookbehind:

  • (?=...) – positive lookahead

  • (?!...) – negative lookahead

  • (?<=...) – positive lookbehind

  • (?<!...) – negative lookbehind

Non-greedy quantifiers:

  • *?, +?, ??, {m,n}?

Named capturing groups:

  • (?P<name>...) or (?<name>...)

Unicode support:

  • \p{L} matches any kind of letter in any language

Assertions and anchors:

  • \b, \B, \A, \Z, \z

Inline modifiers:

  • (?i) for case-insensitive

  • (?m) for multiline matching, etc.

(?<=\buser\s)\w+

This expression matches any word that follows "user " using a lookbehind assertion.


Summary:

PCRE are like the "advanced edition" of regular expressions — highly powerful, widely used, and very flexible. If you're working in an environment that supports PCRE, you can take advantage of rich pattern matching features inspired by Perl.


Guard

In software development, a guard (also known as a guard clause or guard statement) is a protective condition used at the beginning of a function or method to ensure that certain criteria are met before continuing execution.

In simple terms:

A guard is like a bouncer at a club—it only lets valid input or states through and exits early if something is off.

Typical example (in Python):

def divide(a, b):
    if b == 0:
        return "Division by zero is not allowed"  # Guard clause
    return a / b

This guard prevents the function from attempting to divide by zero.


Benefits of guard clauses:

  • Early exit on invalid conditions

  • Improved readability by avoiding deeply nested if-else structures

  • Cleaner code flow, as the "happy path" (normal execution) isn’t cluttered by edge cases


Examples in other languages:

JavaScript:

function login(user) {
  if (!user) return; // Guard clause
  // Continue with login logic
}

Swift (even has a dedicated guard keyword):

func greet(person: String?) {
  guard let name = person else {
    print("No name provided")
    return
  }
  print("Hello, \(name)!")
}

Vite

Vite is a modern build tool and development server for web applications, created by Evan You, the creator of Vue.js. It is designed to make the development and build processes faster and more efficient. The name "Vite" comes from the French word for "fast," reflecting the primary goal of the tool: a lightning-fast development environment.

The main features of Vite are:

  1. Fast Development Server: Vite uses modern ES modules (ESM), providing an ultra-fast development server. It only loads the latest module, making the initial startup much faster than traditional bundlers.

  2. Hot Module Replacement (HMR): HMR works extremely fast by updating only the changed modules, without needing to reload the entire application.

  3. Modern Build System: Vite uses Rollup under the hood to bundle the final production build, enabling optimized and efficient builds.

  4. Zero Configuration: Vite is very user-friendly and doesn’t require extensive configuration. It works immediately with the default settings, supporting many common web technologies out-of-the-box (e.g., Vue.js, React, TypeScript, CSS preprocessors, etc.).

  5. Optimized Production: For production builds, Rollup is used, which is known for creating efficient and optimized bundles.

Vite is mainly aimed at modern web applications and is particularly popular with developers working with frameworks like Vue, React, or Svelte.

 


Salesforce Apex

Salesforce Apex is an object-oriented programming language specifically designed for the Salesforce platform. It is similar to Java and is primarily used to implement custom business logic, automation, and integrations within Salesforce.

Key Features of Apex:

  • Cloud-based: Runs exclusively on Salesforce servers.

  • Java-like Syntax: If you know Java, you can learn Apex quickly.

  • Tightly Integrated with Salesforce Database (SOQL & SOSL): Enables direct data queries and manipulations.

  • Event-driven: Often executed through Salesforce triggers (e.g., record changes).

  • Governor Limits: Salesforce imposes limits (e.g., maximum SOQL queries per transaction) to maintain platform performance.

Uses of Apex:

  • Triggers: Automate actions when records change.

  • Batch Processing: Handle large data sets in background jobs.

  • Web Services & API Integrations: Communicate with external systems.

  • Custom Controllers for Visualforce & Lightning: Control user interfaces.

 


Memcached

Memcached is a distributed in-memory caching system commonly used to speed up web applications. It temporarily stores frequently requested data in RAM to avoid expensive database queries or API calls.

Key Features of Memcached:

  • Key-Value Store: Data is stored as key-value pairs.

  • In-Memory: Runs entirely in RAM, making it extremely fast.

  • Distributed: Supports multiple servers (clusters) to distribute load.

  • Simple API: Provides basic operations like set, get, and delete.

  • Eviction Policy: Uses LRU (Least Recently Used) to remove old data when memory is full.

Common Use Cases:

  • Caching Database Queries: Reduces load on databases like MySQL or PostgreSQL.

  • Session Management: Stores user sessions in scalable web applications.

  • Temporary Data Storage: Useful for API rate limiting or short-lived data caching.

Memcached vs. Redis:

  • Memcached: Faster for simple key-value caching, scales well horizontally.

  • Redis: Offers more features like persistence, lists, hashes, sets, and pub/sub messaging.

Installation & Usage (Example for Linux):

sudo apt update && sudo apt install memcached
sudo systemctl start memcached

It can be used with PHP or Python via appropriate libraries.

 


Whoops

The Whoops PHP library is a powerful and user-friendly error handling tool for PHP applications. It provides clear and well-structured error pages, making it easier to debug and fix issues.

Key Features of Whoops

Beautiful, interactive error pages
Detailed stack traces with code previews
Easy integration into existing PHP projects
Support for various frameworks (Laravel, Symfony, Slim, etc.)
Customizable with custom handlers and loggers


Installation

You can install Whoops using Composer:

composer require filp/whoops

Basic Usage

Here's a simple example of how to enable Whoops in your PHP project:

require 'vendor/autoload.php';

use Whoops\Run;
use Whoops\Handler\PrettyPageHandler;

$whoops = new Run();
$whoops->pushHandler(new PrettyPageHandler());
$whoops->register();

// Trigger an error (e.g., calling an undefined variable)
echo $undefinedVariable;

If an error occurs, Whoops will display a clear and visually appealing debug page.


Customization & Extensions

You can extend Whoops by adding custom error handling, for example:

use Whoops\Handler\CallbackHandler;

$whoops->pushHandler(new CallbackHandler(function ($exception, $inspector, $run) {
    error_log($exception->getMessage());
}));

This version logs errors to a file instead of displaying them.


Use Cases

Whoops is mainly used in development environments to quickly detect and fix errors. However, in production environments, it should be disabled or replaced with a custom error page.


Swift

Swift is a powerful and user-friendly programming language developed by Apple for building apps on iOS, macOS, watchOS, and tvOS. It was introduced in 2014 as a modern alternative to Objective-C, designed for speed, safety, and simplicity.

Key Features of Swift:

  • Safety: Prevents common programming errors like null pointer dereferencing.
  • Readability & Maintainability: Clear, intuitive syntax makes code easier to write and understand.
  • Performance: Optimized for high-speed execution, comparable to C++.
  • Interactivity: Playgrounds allow developers to test code and see results in real-time.
  • Open Source: Since 2015, Swift has been an open-source project, continuously evolving with community contributions.

Swift is primarily used for Apple platforms but can also be utilized for server-side applications and even Android or Windows apps in some cases.