bg_image
header

Headless CMS

A Headless CMS (Content Management System) is a system where the backend (content management) is completely separated from the frontend (content presentation).

In detail:

Traditional CMS (e.g., WordPress):

  • Backend and frontend are tightly coupled.

  • You create content in the system and it's rendered directly using built-in themes and templates with HTML.

  • Pros: All-in-one solution, quick to get started.

  • Cons: Limited flexibility, harder to deliver content across multiple platforms (e.g., website + mobile app).

Headless CMS:

  • Backend only.

  • Content is accessed via an API (usually REST or GraphQL).

  • The frontend (e.g., a React site, native app, or digital signage) fetches the content dynamically.

  • Pros: Very flexible, ideal for multi-channel content delivery.

  • Cons: Frontend must be built separately (requires more development effort).

Common use cases:

  • Websites built with modern JavaScript frameworks (like React, Next.js, Vue)

  • Mobile apps that use the same content as the website

  • Omnichannel strategies: website, app, smart devices, etc.

Examples of Headless CMS platforms:

  • Contentful

  • Strapi

  • Sanity

  • Directus

  • Prismic

  • Storyblok (a hybrid with visual editing capabilities)

 


Storyblok

Storyblok is a user-friendly, headless Content Management System (CMS) that helps developers and marketing teams create, manage, and publish content quickly and efficiently. It offers a visual editing interface for real-time content design and is flexible with various frameworks and platforms. Its API-first architecture allows content to be delivered to any digital platform, making it ideal for modern web and app development.


Shopware

Shopware is a modular e-commerce system from Germany that allows you to create and manage online stores. It’s designed for both small retailers and large enterprises, known for its flexibility, scalability, and modern technology.


🔹 General Information:

  • Developer: Shopware AG (founded in 2000 in Germany)

  • Technology: PHP, Symfony framework, API-first approach

  • Current Version: Shopware 6 (since 2019)

  • Open Source: Yes, with paid extensions available

  • Headless Ready: Yes, supports headless commerce via APIs


🔹 Key Features:

  • Product Management: Variants, tier pricing, media, SEO tools

  • Sales Channels: Web shop, POS, social media, marketplaces

  • Content Management: Built-in CMS ("Shopping Experiences")

  • Payments & Shipping: Many integrations (e.g. PayPal, Klarna)

  • Multilingual & Multi-Currency Support

  • B2B & B2C capabilities

  • App System & API for custom extensions


🔹 Who is Shopware for?

  • Startups (free Community Edition available)

  • SMEs and mid-sized businesses

  • Enterprise clients with complex needs

  • Very popular in the DACH region (Germany, Austria, Switzerland)


🔹 Advantages:

  • Made in Germany → GDPR-compliant

  • Highly customizable

  • Active ecosystem & community

  • Scalable for growing businesses

 


Hyperscaler

A hyperscaler is a company that provides cloud services on a massive scale — offering IT infrastructure such as computing power, storage, and networking that is flexible, highly available, and globally scalable. Common examples of hyperscalers include:

  • Amazon Web Services (AWS)

  • Microsoft Azure

  • Google Cloud Platform (GCP)

  • Alibaba Cloud

  • IBM Cloud (on a somewhat smaller scale)

Key characteristics of hyperscalers:

  1. Massive scalability
    They can scale their services virtually without limits, depending on the customer's needs.

  2. Global infrastructure
    Their data centers are distributed worldwide, enabling high availability, low latency, and redundancy.

  3. Automation & standardization
    Many operations are automated (e.g., provisioning, monitoring, billing), making services more efficient and cost-effective.

  4. Self-service & pay-as-you-go
    Customers usually access services via web portals or APIs and pay only for what they actually use.

  5. Innovation platform
    Hyperscalers offer not only infrastructure (IaaS), but also platform services (PaaS), as well as tools for AI, big data, or IoT.

What are hyperscalers used for?

  • Hosting websites or web applications

  • Data storage (e.g., backups, archives)

  • Big data analytics

  • Machine learning / AI

  • Streaming services

  • Corporate IT infrastructure


Vite

Vite is a modern build tool and development server for web applications, created by Evan You, the creator of Vue.js. It is designed to make the development and build processes faster and more efficient. The name "Vite" comes from the French word for "fast," reflecting the primary goal of the tool: a lightning-fast development environment.

The main features of Vite are:

  1. Fast Development Server: Vite uses modern ES modules (ESM), providing an ultra-fast development server. It only loads the latest module, making the initial startup much faster than traditional bundlers.

  2. Hot Module Replacement (HMR): HMR works extremely fast by updating only the changed modules, without needing to reload the entire application.

  3. Modern Build System: Vite uses Rollup under the hood to bundle the final production build, enabling optimized and efficient builds.

  4. Zero Configuration: Vite is very user-friendly and doesn’t require extensive configuration. It works immediately with the default settings, supporting many common web technologies out-of-the-box (e.g., Vue.js, React, TypeScript, CSS preprocessors, etc.).

  5. Optimized Production: For production builds, Rollup is used, which is known for creating efficient and optimized bundles.

Vite is mainly aimed at modern web applications and is particularly popular with developers working with frameworks like Vue, React, or Svelte.

 


Partial Mock

A Partial Mock is a testing technique where only certain methods of an object are mocked, while the rest of the object retains its real implementation. This is useful when you want to stub or mock specific methods but keep others functioning normally.

When to Use a Partial Mock?

  • When you want to test a class but isolate certain methods.

  • When some methods are difficult to test (e.g., they have external dependencies), but others should retain their real logic.

  • When you only need to stub specific methods to control test behavior.

Example in PHP with PHPUnit

Suppose you have a Calculator class but want to mock only the multiply() method while keeping add() as is.

class Calculator {
    public function add($a, $b) {
        return $a + $b;
    }

    public function multiply($a, $b) {
        return $a * $b;
    }
}

// PHPUnit Test with Partial Mock
class CalculatorTest extends \PHPUnit\Framework\TestCase {
    public function testPartialMock() {
        // Create a Partial Mock for Calculator
        $calculator = $this->getMockBuilder(Calculator::class)
                           ->onlyMethods(['multiply']) // Only mock this method
                           ->getMock();

        // Define behavior for multiply()
        $calculator->method('multiply')->willReturn(10);

        // Test real add() method
        $this->assertEquals(5, $calculator->add(2, 3));

        // Test mocked multiply() method
        $this->assertEquals(10, $calculator->multiply(2, 3));
    }
}

Here, add() remains unchanged and executes the real implementation, while multiply() always returns 10.

Conclusion

Partial Mocks are useful when you need to isolate specific parts of a class without fully replacing it. They help make tests more stable and efficient by mocking only selected methods.


Salesforce Apex

Salesforce Apex is an object-oriented programming language specifically designed for the Salesforce platform. It is similar to Java and is primarily used to implement custom business logic, automation, and integrations within Salesforce.

Key Features of Apex:

  • Cloud-based: Runs exclusively on Salesforce servers.

  • Java-like Syntax: If you know Java, you can learn Apex quickly.

  • Tightly Integrated with Salesforce Database (SOQL & SOSL): Enables direct data queries and manipulations.

  • Event-driven: Often executed through Salesforce triggers (e.g., record changes).

  • Governor Limits: Salesforce imposes limits (e.g., maximum SOQL queries per transaction) to maintain platform performance.

Uses of Apex:

  • Triggers: Automate actions when records change.

  • Batch Processing: Handle large data sets in background jobs.

  • Web Services & API Integrations: Communicate with external systems.

  • Custom Controllers for Visualforce & Lightning: Control user interfaces.

 


Memcached

Memcached is a distributed in-memory caching system commonly used to speed up web applications. It temporarily stores frequently requested data in RAM to avoid expensive database queries or API calls.

Key Features of Memcached:

  • Key-Value Store: Data is stored as key-value pairs.

  • In-Memory: Runs entirely in RAM, making it extremely fast.

  • Distributed: Supports multiple servers (clusters) to distribute load.

  • Simple API: Provides basic operations like set, get, and delete.

  • Eviction Policy: Uses LRU (Least Recently Used) to remove old data when memory is full.

Common Use Cases:

  • Caching Database Queries: Reduces load on databases like MySQL or PostgreSQL.

  • Session Management: Stores user sessions in scalable web applications.

  • Temporary Data Storage: Useful for API rate limiting or short-lived data caching.

Memcached vs. Redis:

  • Memcached: Faster for simple key-value caching, scales well horizontally.

  • Redis: Offers more features like persistence, lists, hashes, sets, and pub/sub messaging.

Installation & Usage (Example for Linux):

sudo apt update && sudo apt install memcached
sudo systemctl start memcached

It can be used with PHP or Python via appropriate libraries.

 


Spider

A spider (also called a web crawler or bot) is an automated program that browses the internet to index web pages. These programs are often used by search engines like Google, Bing, or Yahoo to discover and update content in their search index.

How a Spider Works:

  1. Starting Point: The spider begins with a list of URLs to crawl.

  2. Analysis: It fetches the HTML code of a webpage and analyzes its content, links, and metadata.

  3. Following Links: It follows the links found on the page to discover new pages.

  4. Storage: The collected data is sent to the search engine’s database for indexing.

  5. Repetition: The process is repeated regularly to keep the index up to date.

Uses of Spiders:

  • Search engine optimization (SEO)

  • Price comparison websites

  • Web archiving (e.g., Wayback Machine)

  • Automated content analysis for AI models

Some websites use a robots.txt file to specify which areas can or cannot be crawled by a spider.

 


System Under Test - SUT

A SUT (System Under Test) is the system or component being tested in a testing process. The term is commonly used in software development and quality assurance.

Meaning and Application:

  • In software testing, the SUT refers to the entire program, a single module, or a specific function being tested.
  • In hardware testing, the SUT could be an electronic device or a machine under examination.
  • In automated testing, the SUT is often tested using frameworks and tools to identify errors or unexpected behavior.

A typical testing process includes:

  1. Defining test cases based on requirements.
  2. Executing tests on the SUT.
  3. Reviewing test results and comparing them with expected outcomes.