bg_image
header

Min Heap

Ein Min-Heap ist eine spezielle Art von binärem Heap (Priority Queue), bei dem der Schlüssel oder die Wertigkeit des Elternknotens immer kleiner oder gleich der der Kindknoten ist. Dies bedeutet, dass der kleinste Wert im Min-Heap immer an der Wurzel (dem obersten Knoten) zu finden ist. Min-Heaps haben folgende Eigenschaften:

  1. Vollständiger Binärbaum: Ein Min-Heap ist ein vollständig ausgefüllter Binärbaum, was bedeutet, dass alle Ebenen vollständig gefüllt sind, mit Ausnahme möglicherweise der letzten Ebene, die von links nach rechts gefüllt wird.

  2. Heap-Eigenschaft: Für jeden Knoten ii mit den Kindknoten 2i+12i+1 (links) und 2i+22i+2 (rechts) gilt: Der Wert des Elternknotens ii ist kleiner oder gleich den Werten der Kindknoten. Mathematisch ausgedrückt: A[i]≤A[2i+1]A[i] \leq A[2i+1] und A[i]≤A[2i+2]A[i] \leq A[2i+2], falls diese Kindknoten existieren.

Verwendung von Min-Heaps

Min-Heaps werden häufig in Algorithmen verwendet, die wiederholt das kleinste Element einer Menge extrahieren müssen. Hier sind einige typische Anwendungen:

  1. Priority Queue: Min-Heaps werden verwendet, um Prioritätswarteschlangen zu implementieren, bei denen das Element mit der höchsten Priorität (in diesem Fall der kleinste Wert) immer an der Spitze steht.

  2. Heapsort: Ein Heapsort-Algorithmus kann sowohl mit Min-Heaps als auch mit Max-Heaps implementiert werden. Beim Heapsort mit einem Min-Heap wird das kleinste Element wiederholt extrahiert, um eine sortierte Liste zu erzeugen.

  3. Graphalgorithmen: Min-Heaps werden in Graphalgorithmen wie Dijkstra's Algorithmus zur Berechnung der kürzesten Wege und Prim's Algorithmus zur Berechnung minimaler Spannbäume verwendet.

Grundoperationen auf einem Min-Heap

Die grundlegenden Operationen, die auf einem Min-Heap durchgeführt werden können, sind:

  1. Einfügen (Insert): Ein neues Element wird an der letzten Position eingefügt und dann nach oben geschoben (Bubble-Up), um die Heap-Eigenschaft wiederherzustellen.

  2. Minimum extrahieren (Extract-Min): Das Wurzelelement (das kleinste Element) wird entfernt und durch das letzte Element ersetzt. Dann wird dieses Element nach unten verschoben (Bubble-Down), um die Heap-Eigenschaft wiederherzustellen.

  3. Minimum abrufen (Get-Min): Das Wurzelelement wird zurückgegeben, ohne es zu entfernen. Dies hat eine Zeitkomplexität von O(1)O(1).

  4. Heapify: Diese Operation wird verwendet, um die Heap-Eigenschaft wiederherzustellen, wenn sie verletzt wird. Es gibt zwei Varianten: Heapify-Up und Heapify-Down.

Beispiel

Angenommen, wir haben die folgenden Elemente: [3, 1, 6, 5, 2, 4]. Ein Min-Heap, der diese Elemente repräsentiert, könnte wie folgt aussehen:

       1
     /   \
    2     4
   / \   /
  5   3 6

Hier ist 1 die Wurzel des Heaps und das kleinste Element. Jeder Elternknoten hat einen Wert, der kleiner oder gleich den Werten seiner Kindknoten ist.

Zusammengefasst ist ein Min-Heap eine effiziente Datenstruktur für das Verwalten von Datensätzen, bei denen wiederholt das kleinste Element abgerufen und entfernt werden muss.

 

 


Erstellt vor 1 Jahr
First In First Out - FIFO Heap Last In First Out - LIFO Min Heap Priority Queue

Hinterlasse einen Kommentar Antworten Abbrechen
* Erforderliches Feld