bg_image
header

Contract Driven Development - CDD

Contract Driven Development (CDD) ist eine Softwareentwicklungsmethode, bei der der Schwerpunkt auf der Definition und Verwendung von Contracts (Verträgen) zwischen verschiedenen Komponenten oder Services liegt. Diese Verträge spezifizieren klar, wie verschiedene Softwareteile miteinander interagieren sollen. CDD wird häufig in Microservices-Architekturen oder bei der Entwicklung von APIs verwendet, um sicherzustellen, dass die Kommunikation zwischen unabhängigen Modulen korrekt und konsistent ist.

Wichtige Konzepte von CDD

  1. Contracts als Quelle der Wahrheit:

    • Ein Contract ist eine formale Spezifikation (z. B. in JSON oder YAML) eines Dienstes oder einer API, die beschreibt, welche Endpunkte, Parameter, Datenformate und Erwartungen an die Kommunikation bestehen.
    • Der Vertrag wird als zentrale Ressource betrachtet, auf dessen Basis Client- und Server-Komponenten entwickelt werden.
  2. Trennung von Implementierung und Vertrag:

    • Die Implementierung eines Services oder einer Komponente muss den spezifizierten Vertrag erfüllen.
    • Die Clients (Nutzer dieses Services) entwickeln ihre Anfragen basierend auf dem Vertrag, unabhängig von der tatsächlichen Implementierung auf der Serverseite.
  3. Vertragsgetriebene Tests:

    • Ein zentraler Aspekt von CDD ist das Testen der Einhaltung des Vertrags durch automatisierte Contract Tests. Diese Tests stellen sicher, dass die Interaktion zwischen verschiedenen Komponenten den erwarteten Vorgaben entspricht.
    • Zum Beispiel kann ein Consumer-Driven Contract verwendet werden, um sicherzustellen, dass die vom Verbraucher erwarteten Daten und Formate vom Anbieter geliefert werden.

Vorteile von Contract Driven Development

  1. Klare Schnittstellendefinition: Durch die explizite Spezifikation der Verträge wird von Anfang an festgelegt, wie Komponenten miteinander kommunizieren, was Missverständnisse und Fehler minimiert.
  2. Unabhängige Entwicklung: Teams, die unterschiedliche Services oder Komponenten entwickeln, können dies parallel tun, solange sie sich an den definierten Vertrag halten.
  3. Erleichterte Integration und Tests: Da die Verträge als Basis dienen, können Mock-Server oder -Clients basierend auf diesen Spezifikationen erstellt werden, um Integrationstests durchzuführen, ohne dass alle Komponenten vorhanden sein müssen.
  4. Erhöhte Konsistenz und Zuverlässigkeit: Durch automatisierte Contract-Tests wird sichergestellt, dass sich Änderungen in einem Service nicht negativ auf andere Systeme auswirken.

Anwendungsfälle von CDD

  • Microservices-Architekturen: In komplexen verteilten Systemen hilft CDD, die Kommunikation zwischen Services zu definieren und zu stabilisieren.
  • API-Entwicklung: In der API-Entwicklung stellt ein Contract sicher, dass die angebotene Schnittstelle den Erwartungen der Nutzer (z. B. anderen Teams oder externen Kunden) entspricht.
  • Consumer-Driven Contracts: Bei Consumer-Driven Contracts (z. B. durch Tools wie Pact) geben Verbraucher eines Services die erwarteten Interaktionen vor, und die Produzenten stellen sicher, dass ihre Services diesen Erwartungen gerecht werden.

Nachteile und Herausforderungen von CDD

  1. Verwaltungsaufwand:
    • Die Pflege und Aktualisierung von Verträgen kann aufwändig sein, insbesondere bei vielen beteiligten Services oder in einer dynamischen Umgebung.
  2. Versionierung und Rückwärtskompatibilität:
    • Wenn Verträge sich ändern, müssen sowohl der Anbieter als auch der Verbraucher synchron angepasst werden, was komplexe Abstimmungen erfordert.
  3. Überdokumentation:
    • In manchen Fällen kann CDD zu einer zu starken Fokussierung auf Dokumentation führen, was die Flexibilität verringert.

Fazit

Contract Driven Development eignet sich besonders für Projekte mit vielen unabhängigen Komponenten, bei denen klare und stabile Schnittstellen entscheidend sind. Es hilft, Missverständnisse zu vermeiden und stellt durch automatisierte Tests sicher, dass die Kommunikation zwischen Services robust bleibt. Die zusätzliche Komplexität bei der Verwaltung von Verträgen muss jedoch bedacht werden.

 


Pipeline

In der Softwareentwicklung bezeichnet eine Pipeline eine automatisierte Abfolge von Schritten, die ausgeführt werden, um Code von der Entwicklungsphase bis zur Bereitstellung in einer Produktionsumgebung zu bringen. Diese Pipelines sind ein zentraler Bestandteil von Continuous Integration (CI) und Continuous Deployment (CD), zwei Praktiken, die darauf abzielen, Software schneller, zuverlässiger und konsistenter zu entwickeln und bereitzustellen.

Hauptkomponenten einer Softwareentwicklungs-Pipeline:

  1. Quellcode-Verwaltung (Source Control):

    • Der Prozess beginnt normalerweise, wenn Entwickler neuen Code in ein Versionskontrollsystem (z. B. Git) einchecken. Dieser Code-Commit löst oft automatisch den nächsten Schritt in der Pipeline aus.
  2. Build-Prozess:

    • Der Code wird automatisch kompiliert und gebaut. Dabei wird der Quellcode in ausführbare Dateien, Bibliotheken oder andere artefakte umgewandelt. In diesem Schritt werden auch Abhängigkeiten aufgelöst und Pakete erstellt.
  3. Automatisierte Tests:

    • Nach dem Build-Prozess wird der Code automatisch getestet. Dazu gehören Unit-Tests, Integrationstests, Funktionstests und manchmal auch UI-Tests. Diese Tests stellen sicher, dass neue Änderungen keine bestehenden Funktionen beschädigen und dass der Code den Anforderungen entspricht.
  4. Bereitstellung (Deployment):

    • Wenn die Tests erfolgreich sind, wird der Code automatisch in eine bestimmte Umgebung bereitgestellt. Dies kann eine Staging-Umgebung sein, in der weitere manuelle oder automatisierte Tests stattfinden, oder es kann direkt in die Produktionsumgebung gehen.
  5. Monitoring und Feedback:

    • Nach der Bereitstellung wird die Anwendung überwacht, um sicherzustellen, dass sie wie erwartet funktioniert. Fehler und Performance-Probleme können schnell identifiziert und behoben werden. Feedback-Schleifen helfen den Entwicklern, Probleme frühzeitig zu erkennen und kontinuierlich Verbesserungen vorzunehmen.

Vorteile einer Pipeline in der Softwareentwicklung:

  • Automatisierung: Reduziert manuelle Eingriffe und minimiert die Fehleranfälligkeit.
  • Schnellere Entwicklung: Änderungen können schneller und häufiger in die Produktion überführt werden.
  • Konsistenz: Durch festgelegte Prozesse wird sichergestellt, dass alle Änderungen denselben Qualitätsanforderungen genügen.
  • Kontinuierliche Integration und Bereitstellung: Macht es möglich, Code kontinuierlich zu integrieren und schnell in die Produktion zu bringen, was die Reaktionszeit auf Fehler und neue Anforderungen verkürzt.

Diese Pipelines sind somit entscheidend für die moderne Softwareentwicklung, insbesondere in Umgebungen, die auf agile Methoden und DevOps-Praktiken setzen.

 


Continuous Deployment - CD

Continuous Deployment (CD) ist ein Ansatz in der Softwareentwicklung, bei dem Codeänderungen automatisch in die Produktionsumgebung übertragen werden, nachdem sie den automatisierten Testprozess bestanden haben. Dies bedeutet, dass neue Funktionen, Fehlerbehebungen und andere Änderungen sofort nach erfolgreicher Durchführung von Tests live gehen können. Hier sind die Hauptmerkmale und Vorteile von Continuous Deployment:

  1. Automatisierung: Der gesamte Prozess von der Codeänderung bis zur Produktion ist automatisiert. Dazu gehören das Bauen der Software, das Testen und das Deployment.

  2. Schnelle Bereitstellung: Änderungen werden sofort nach erfolgreichem Testen bereitgestellt, was die Zeit zwischen der Entwicklung und der Nutzung durch die Endbenutzer erheblich verkürzt.

  3. Hohe Qualität und Zuverlässigkeit: Durch den Einsatz umfangreicher automatisierter Tests und Überwachungen wird sichergestellt, dass nur qualitativ hochwertiger und stabiler Code in die Produktion gelangt.

  4. Geringere Risiken: Da Änderungen häufig und in kleinen Inkrementen bereitgestellt werden, sind die Risiken im Vergleich zu großen, seltenen Releases geringer. Fehler können schneller erkannt und behoben werden.

  5. Kundenzufriedenheit: Kunden profitieren schneller von neuen Funktionen und Verbesserungen, was die Zufriedenheit erhöht.

  6. Kontinuierliches Feedback: Entwickler erhalten schneller Feedback zu ihren Änderungen, was die Möglichkeit bietet, Probleme schneller zu identifizieren und zu beheben.

Ein typischer Continuous Deployment-Prozess könnte folgende Schritte umfassen:

  1. Codeänderung: Ein Entwickler macht eine Änderung im Code und pusht diese in ein Versionskontrollsystem (z.B. Git).

  2. Automatisiertes Bauen: Ein Continuous Integration (CI) Server (z.B. Jenkins, CircleCI) zieht den neuesten Code, baut die Anwendung und führt unit tests und integration tests durch.

  3. Automatisiertes Testen: Der Code durchläuft eine Reihe automatisierter Tests, einschließlich Unit-Tests, Integrationstests und möglicherweise End-to-End-Tests.

  4. Bereitstellung: Wenn alle Tests erfolgreich sind, wird der Code automatisch in die Produktionsumgebung übertragen.

  5. Überwachung und Feedback: Nach der Bereitstellung wird die Anwendung überwacht, um sicherzustellen, dass sie korrekt funktioniert. Feedback aus der Produktionsumgebung kann zur weiteren Verbesserung verwendet werden.

Continuous Deployment unterscheidet sich von Continuous Delivery (auch CD genannt), wo der Code ebenfalls regelmäßig und automatisch gebaut und getestet wird, aber eine manuelle Freigabe erforderlich ist, um ihn in die Produktion zu bringen. Continuous Deployment geht einen Schritt weiter und automatisiert auch diesen letzten Schritt.

 


Release Artefakt

Ein Release-Artifact ist ein spezifisches Build- oder Paket einer Software, das als Ergebnis eines Build-Prozesses erzeugt wird und zur Verteilung oder Bereitstellung bereit ist. Diese Artifacts sind die endgültigen Produkte, die bereitgestellt und verwendet werden können, und enthalten alle notwendigen Komponenten und Dateien, die für die Ausführung der Software erforderlich sind.

Hier sind einige wichtige Aspekte von Release-Artifacts:

  1. Bestandteile: Ein Release-Artifact kann ausführbare Dateien, Bibliotheken, Konfigurationsdateien, Skripte, Dokumentationen und andere Ressourcen umfassen, die für die Ausführung der Software notwendig sind.

  2. Formate: Release-Artifacts können in verschiedenen Formaten vorliegen, abhängig von der Art der Software und der Zielplattform. Beispiele sind:

    • JAR-Dateien (für Java-Anwendungen)
    • DLLs oder EXE-Dateien (für Windows-Anwendungen)
    • Docker-Images (für containerisierte Anwendungen)
    • ZIP oder TAR.GZ Archive (für verteilbare Archive)
    • Installationsprogramme oder Pakete (z.B. DEB für Debian-basierte Systeme, RPM für Red Hat-basierte Systeme)
  3. Versionsnummerierung: Release-Artifacts sind normalerweise versioniert, um klar zwischen verschiedenen Versionen der Software zu unterscheiden und die Rückverfolgbarkeit zu gewährleisten.

  4. Repository und Verteilung: Release-Artifacts werden oft in Artefakt-Repositories wie JFrog Artifactory, Nexus Repository, oder Docker Hub gespeichert, wo sie versioniert und verwaltet werden können. Diese Repositories ermöglichen es, die Artifacts einfach zu verteilen und in verschiedenen Umgebungen bereitzustellen.

  5. CI/CD Pipelines: In modernen Continuous Integration/Continuous Deployment (CI/CD) Pipelines ist das Erstellen und Verwalten von Release-Artifacts ein zentraler Bestandteil. Nach erfolgreichem Abschluss aller Tests und Qualitätssicherungsmaßnahmen werden die Artifacts erzeugt und zur Bereitstellung vorbereitet.

  6. Integrität und Sicherheit: Release-Artifacts werden häufig mit Checksummen und digitalen Signaturen versehen, um ihre Integrität und Authentizität sicherzustellen. Dies verhindert, dass die Artifacts während der Verteilung oder Speicherung manipuliert werden.

Ein typischer Workflow könnte folgendermaßen aussehen:

  • Quellcode wird geschrieben und in ein Versionskontrollsystem eingecheckt.
  • Ein Build-Server erstellt aus dem Quellcode ein Release-Artifact.
  • Das Artifact wird getestet und bei Bestehen aller Tests in ein Repository hochgeladen.
  • Das Artifact wird dann in verschiedenen Umgebungen (z.B. Test, Staging, Produktion) bereitgestellt.

Zusammengefasst sind Release-Artifacts die fertigen Softwarepakete, die nach dem Build- und Testprozess bereit sind, um in Produktionsumgebungen eingesetzt zu werden. Sie spielen eine zentrale Rolle im Software-Entwicklungs- und Bereitstellungsprozess.

 


API First Development

API-First Development ist ein Ansatz zur Softwareentwicklung, bei dem die API (Application Programming Interface) als erster und zentraler Bestandteil des Entwicklungsprozesses entworfen und implementiert wird. Anstatt die API als nachträglichen Gedanken zu betrachten, steht sie im Mittelpunkt des Entwicklungsprozesses. Dies hat mehrere Vorteile und bestimmte Charakteristika:

Vorteile von API-First Development

  1. Klar definierte Schnittstellen:

    • APIs werden von Anfang an spezifiziert, was klare und konsistente Schnittstellen zwischen verschiedenen Systemkomponenten sicherstellt.
  2. Bessere Zusammenarbeit:

    • Teams können parallel arbeiten. Frontend- und Backend-Entwickler können unabhängig voneinander arbeiten, sobald die API-Spezifikation festgelegt ist.
  3. Flexibilität:

    • APIs können von verschiedenen Clients verwendet werden, sei es eine Webanwendung, mobile App oder andere Services.
  4. Wiederverwendbarkeit:

    • APIs können von mehreren Anwendungen und Systemen wiederverwendet werden, was die Effizienz erhöht.
  5. Schnellere Markteinführung:

    • Die parallele Entwicklung ermöglicht eine schnellere Markteinführung, da verschiedene Teams gleichzeitig an ihren Teilen des Projekts arbeiten können.
  6. Verbesserte Wartbarkeit:

    • Eine klar definierte API erleichtert die Wartung und Weiterentwicklung, da Änderungen und Erweiterungen an der API unabhängig vom Rest des Systems vorgenommen werden können.

Merkmale von API-First Development

  1. API-Spezifikation als erste Stufe:

    • Der Entwicklungsprozess beginnt mit der Erstellung einer API-Spezifikation, oft in Formaten wie OpenAPI (ehemals Swagger) oder RAML.
  2. Design-Dokumentation:

    • API-Definitionen werden dokumentiert und dienen als Verträge zwischen verschiedenen Entwicklungsteams und auch als Dokumentation für externe Entwickler.
  3. Mocks und Stubs:

    • Bevor die tatsächliche Implementierung beginnt, werden oft Mocks und Stubs erstellt, um die API zu simulieren. Dies ermöglicht es Frontend-Entwicklern, ohne das endgültige Backend zu arbeiten.
  4. Automatisierung:

    • Tools zur automatischen Generierung von API-Client- und Server-Code basierend auf der API-Spezifikation werden verwendet. Beispiele sind Swagger Codegen oder OpenAPI Generator.
  5. Tests und Validierung:

    • API-Spezifikationen werden genutzt, um automatische Tests und Validierungen durchzuführen, um sicherzustellen, dass Implementierungen den definierten Schnittstellen entsprechen.

Beispiele und Werkzeuge

  • OpenAPI/Swagger:

    • Ein weit verbreitetes Framework für die API-Definition und Dokumentation. Es bietet Werkzeuge zur automatischen Generierung von Dokumentationen, Client-SDKs und Server-Stubs.
  • Postman:

    • Ein Tool zur API-Entwicklung, das Mocks, Tests und Dokumentation unterstützt.
  • API Blueprint:

    • Eine Markdown-basierte API-Spezifikationssprache, die eine klare und verständliche API-Dokumentation ermöglicht.
  • RAML (RESTful API Modeling Language):

    • Eine andere Spezifikationssprache für die API-Definition, die besonders für RESTful APIs genutzt wird.
  • API Platform:

    • Ein Framework zur Erstellung von APIs, das auf Symfony basiert und Funktionen wie automatische API-Dokumentation, CRUD-Generierung und GraphQL-Unterstützung bietet.

Praktisches Beispiel

  1. API-Spezifikation erstellen:

    • Eine OpenAPI-Spezifikation für eine einfache Benutzerverwaltung-API könnte wie folgt aussehen:
openapi: 3.0.0
info:
  title: User Management API
  version: 1.0.0
paths:
  /users:
    get:
      summary: Retrieve a list of users
      responses:
        '200':
          description: A list of users
          content:
            application/json:
              schema:
                type: array
                items:
                  $ref: '#/components/schemas/User'
  /users/{id}:
    get:
      summary: Retrieve a user by ID
      parameters:
        - name: id
          in: path
          required: true
          schema:
            type: string
      responses:
        '200':
          description: A single user
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/User'
components:
  schemas:
    User:
      type: object
      properties:
        id:
          type: string
        name:
          type: string
        email:
          type: string
  1. API-Dokumentation und Mock-Server generieren:
    • Mit Werkzeugen wie Swagger UI und Swagger Codegen kann man die API-Spezifikation nutzen, um interaktive Dokumentation und Mock-Server zu erstellen.
  2. Entwicklung und Tests:
    • Frontend-Entwickler können den Mock-Server verwenden, um ihre Arbeit zu testen, während Backend-Entwickler die eigentliche API implementieren.

API-First Development stellt sicher, dass APIs konsistent, gut dokumentiert und einfach zu integrieren sind, was zu einer effizienteren und kollaborativeren Entwicklungsumgebung führt.

 

 


You Arent Gonna Need It - YAGNI

YAGNI steht für "You Aren't Gonna Need It" und ist ein Prinzip aus der agilen Softwareentwicklung, insbesondere aus dem Extreme Programming (XP). Es besagt, dass Entwickler nur die Funktionen implementieren sollten, die sie tatsächlich im Moment benötigen und keine Features vorab entwickeln sollten, die möglicherweise in der Zukunft benötigt werden könnten.

Grundprinzipien von YAGNI

  1. Vermeidung von unnötiger Komplexität: Durch die Implementierung nur der notwendigen Funktionen wird die Software einfacher und weniger fehleranfällig.
  2. Zeit- und Ressourcenersparnis: Entwickler sparen Zeit und Ressourcen, die sonst für die Entwicklung und Wartung von nicht benötigten Features aufgewendet würden.
  3. Fokussierung auf das Wesentliche: Teams konzentrieren sich auf die aktuellen Anforderungen und liefern schnell wertvolle Funktionalitäten an den Kunden.
  4. Flexibilität: Da sich Anforderungen in der Softwareentwicklung oft ändern, ist es vorteilhaft, sich nur auf die aktuellen Bedürfnisse zu konzentrieren. Dies ermöglicht es, flexibel auf Änderungen zu reagieren, ohne bereits investierte Arbeit zu verlieren.

Beispiele und Anwendung

Stellen wir uns vor, ein Team arbeitet an einer E-Commerce-Website. Ein YAGNI-orientierter Ansatz würde bedeuten, dass sie sich auf die Implementierung der grundlegenden Funktionen wie Produktsuche, Warenkorb und Kaufabwicklung konzentrieren. Funktionen wie ein Empfehlungsalgorithmus oder eine Integration mit sozialen Medien würden erst entwickelt, wenn sie tatsächlich benötigt werden und nicht vorher.

Verbindung zu anderen Prinzipien

YAGNI ist eng mit anderen agilen Prinzipien und Praktiken verknüpft, wie z.B.:

  • KISS (Keep It Simple, Stupid): Halte das Design und die Implementierung einfach.
  • Refactoring: Verbesserungen am Code werden kontinuierlich und bei Bedarf durchgeführt, anstatt alles im Voraus zu planen.
  • Test-Driven Development (TDD): Testgetriebene Entwicklung hilft sicherzustellen, dass nur notwendige Funktionen implementiert werden, indem Tests für die aktuellen Anforderungen geschrieben werden.

Fazit

YAGNI hilft, die Softwareentwicklung effizienter und flexibler zu gestalten, indem es unnötige Arbeit vermeidet und den Fokus auf die aktuellen Bedürfnisse legt. Dies führt zu einer einfacheren, besser wartbaren und anpassungsfähigeren Software.

 


Testgetriebene Entwicklung - TDD

Testgetriebene Entwicklung (TDD) ist eine Softwareentwicklungsmethode, bei der das Schreiben von Tests ein zentraler Bestandteil des Entwicklungsprozesses ist. Der Hauptansatz von TDD besteht darin, Tests vor der eigentlichen Implementierung des Codes zu schreiben. Dies bedeutet, dass Entwickler zuerst die Anforderungen an eine Funktion oder ein Feature in Form von Tests festlegen und dann den Code schreiben, um diese Tests zu bestehen.

Der TDD-Prozess besteht in der Regel aus den folgenden Schritten:

  1. Schreiben eines Tests: Der Entwickler beginnt, indem er einen Test schreibt, der die erwartete Funktionalität beschreibt. Dieser Test sollte zunächst fehlschlagen, da die zugehörige Implementierung noch nicht existiert.

  2. Implementierung: Nachdem der Test geschrieben wurde, implementiert der Entwickler den minimalen Code, der erforderlich ist, um den Test zum Bestehen zu bringen. Die Implementierung kann zunächst einfach sein und schrittweise verbessert werden.

  3. Durchführung des Tests: Nachdem die Implementierung erfolgt ist, führt der Entwickler den Test erneut aus, um sicherzustellen, dass die neue Funktionalität ordnungsgemäß funktioniert. Wenn der Test erfolgreich ist, wird die Implementierung als abgeschlossen betrachtet.

  4. Refaktorisierung: Nach erfolgreicher Durchführung des Tests kann der Code refaktorisiert werden, um sicherzustellen, dass er sauber, wartbar und effizient ist, ohne die Funktionalität zu beeinträchtigen.

  5. Wiederholung: Dieser Zyklus wird für jede neue Funktionalität oder Änderung wiederholt.

Die grundlegende Idee hinter TDD ist, sicherzustellen, dass der Code ständig auf fehlerfreie Funktionalität geprüft wird, und sicherzustellen, dass jede neue Änderung oder Erweiterung keine bestehenden Funktionen beeinträchtigt. TDD hilft auch, den Fokus auf die Anforderungen und das erwartete Verhalten der Software zu legen, bevor mit der Implementierung begonnen wird.

Die Vorteile von TDD sind vielfältig, darunter:

  • Frühzeitige Fehlererkennung: Probleme werden frühzeitig im Entwicklungsprozess erkannt, was zu geringeren Debugging-Aufwänden führt.
  • Bessere Dokumentation: Die Tests dienen als Dokumentation für die erwartete Funktionalität der Software.
  • Verbesserte Wartbarkeit: Gut getesteter Code ist oft besser wartbar und weniger anfällig für Regressionen.
  • Vertrauen in den Code: Entwickler haben mehr Vertrauen in den Code, da sie wissen, dass er umfassend getestet wurde.

TDD wird in vielen agilen Entwicklungsumgebungen wie Scrum und Extreme Programming (XP) eingesetzt und hat sich als effektive Methode zur Verbesserung der Softwarequalität und -zuverlässigkeit erwiesen.


Akzeptanztests

Akzeptanztests, auch als Acceptance Tests bezeichnet, sind eine Art von Softwaretests, die durchgeführt werden, um sicherzustellen, dass eine Softwareanwendung die Anforderungen und Erwartungen der Benutzer oder Kunden erfüllt. Diese Tests dienen dazu, sicherzustellen, dass die Anwendung aus Sicht des Benutzers ordnungsgemäß funktioniert und die gewünschten Funktionen und Eigenschaften bereitstellt.

Hier sind einige wichtige Merkmale von Akzeptanztests:

  1. Benutzerzentriert: Akzeptanztests sind stark auf die Benutzerperspektive ausgerichtet. Sie werden in der Regel von den Benutzern, Kunden oder Stakeholdern der Anwendung definiert und durchgeführt, um sicherzustellen, dass die Anwendung deren Anforderungen erfüllt.

  2. Validierung von Geschäftsanforderungen: Diese Tests überprüfen, ob die Software die in den Geschäftsanforderungen und Spezifikationen festgelegten Kriterien und Funktionen erfüllt. Sie stellen sicher, dass die Anwendung die beabsichtigten Geschäftsprozesse unterstützt.

  3. Abnahme durch Benutzer: Akzeptanztests werden oft in enger Zusammenarbeit mit den Endbenutzern oder Kunden durchgeführt. Diese Personen spielen eine aktive Rolle bei der Bewertung der Anwendung und bei der Entscheidung, ob sie akzeptiert wird oder nicht.

  4. Formen von Akzeptanztests: Es gibt verschiedene Formen von Akzeptanztests, darunter User Acceptance Testing (UAT), bei dem Endbenutzer die Anwendung testen, und Customer Acceptance Testing (CAT), bei dem die Kunden die Anwendung überprüfen. Diese Tests können manuell oder automatisiert durchgeführt werden.

  5. Kriterien für Akzeptanz: Akzeptanzkriterien werden im Voraus festgelegt und dienen als Grundlage für die Bewertung des Erfolgs der Tests. Sie definieren, was als akzeptabel angesehen wird und welche Funktionalitäten oder Eigenschaften getestet werden sollen.

Akzeptanztests sind der letzte Schritt in der Qualitätssicherung und dienen dazu, sicherzustellen, dass die Software den Erwartungen der Benutzer und Kunden entspricht, bevor sie in den Produktionsbetrieb geht. Sie sind entscheidend, um sicherzustellen, dass die Anwendung geschäftlichen Anforderungen gerecht wird und ein hohes Maß an Benutzerzufriedenheit gewährleistet.