Ein Partial Mock (teilweises Mocking) ist eine Technik beim Testen von Software, bei der nur ein Teil eines Objekts durch ein Mock ersetzt wird, während der Rest der echten Implementierung erhalten bleibt. Dies ist besonders nützlich, wenn du nur bestimmte Methoden eines Objekts stubben oder mocken möchtest, während andere Methoden normal ausgeführt werden.
Wenn du eine Klasse testen möchtest, aber bestimmte Methoden von ihr isolieren musst.
Wenn einige Methoden schwer zu testen sind (z. B. weil sie externe Abhängigkeiten haben), aber andere weiterhin mit ihrer echten Logik arbeiten sollen.
Wenn du nur einige Methoden stubben möchtest, um den Testablauf zu steuern.
Angenommen, du hast eine Klasse Calculator
, aber möchtest die Methode multiply()
mocken, während add()
normal funktioniert.
class Calculator {
public function add($a, $b) {
return $a + $b;
}
public function multiply($a, $b) {
return $a * $b;
}
}
// PHPUnit Test mit Partial Mock
class CalculatorTest extends \PHPUnit\Framework\TestCase {
public function testPartialMock() {
// Partial Mock von Calculator
$calculator = $this->getMockBuilder(Calculator::class)
->onlyMethods(['multiply']) // Nur diese Methode mocken
->getMock();
// Definiere Verhalten für multiply()
$calculator->method('multiply')->willReturn(10);
// Teste echte Methode add()
$this->assertEquals(5, $calculator->add(2, 3));
// Teste gemockte Methode multiply()
$this->assertEquals(10, $calculator->multiply(2, 3));
}
}
Hier bleibt add()
unverändert und arbeitet mit der echten Implementierung, während multiply()
immer 10
zurückgibt.
Partial Mocks sind nützlich, wenn du Teile einer Klasse isolieren möchtest, ohne sie vollständig zu ersetzen. Sie helfen, Tests stabiler und effizienter zu machen, indem nur bestimmte Methoden gemockt werden.
Ein SUT (System Under Test) ist das System oder die Komponente, die in einem Testprozess geprüft wird. Der Begriff wird häufig in der Softwareentwicklung und Qualitätssicherung verwendet.
Ein typischer Testprozess umfasst:
Contract Driven Development (CDD) ist eine Softwareentwicklungsmethode, bei der der Schwerpunkt auf der Definition und Verwendung von Contracts (Verträgen) zwischen verschiedenen Komponenten oder Services liegt. Diese Verträge spezifizieren klar, wie verschiedene Softwareteile miteinander interagieren sollen. CDD wird häufig in Microservices-Architekturen oder bei der Entwicklung von APIs verwendet, um sicherzustellen, dass die Kommunikation zwischen unabhängigen Modulen korrekt und konsistent ist.
Contracts als Quelle der Wahrheit:
Trennung von Implementierung und Vertrag:
Vertragsgetriebene Tests:
Consumer-Driven Contract
verwendet werden, um sicherzustellen, dass die vom Verbraucher erwarteten Daten und Formate vom Anbieter geliefert werden.Contract Driven Development eignet sich besonders für Projekte mit vielen unabhängigen Komponenten, bei denen klare und stabile Schnittstellen entscheidend sind. Es hilft, Missverständnisse zu vermeiden und stellt durch automatisierte Tests sicher, dass die Kommunikation zwischen Services robust bleibt. Die zusätzliche Komplexität bei der Verwaltung von Verträgen muss jedoch bedacht werden.
CaptainHook ist ein Git-Hook-Manager für PHP, der es Entwicklern ermöglicht, automatisierte Aufgaben im Zusammenhang mit Git-Repositories durchzuführen. Es erleichtert das Einrichten und Verwalten von Git-Hooks, also Skripten, die zu bestimmten Zeitpunkten im Git-Workflow automatisch ausgeführt werden (z. B. vor dem Committen oder Pushen von Code). Dies ist besonders nützlich, um Codestandards durchzusetzen, Tests laufen zu lassen, Commit-Nachrichten zu überprüfen oder fehlerhaften Code zu verhindern.
CaptainHook lässt sich einfach über Composer in Projekte integrieren und bietet Flexibilität, um benutzerdefinierte Hooks und Plugins zu erstellen. Es unterstützt verschiedene PHP-Versionen, wobei die neueste Version PHP 8.0 erfordert.
In der Softwareentwicklung bezeichnet eine Pipeline eine automatisierte Abfolge von Schritten, die ausgeführt werden, um Code von der Entwicklungsphase bis zur Bereitstellung in einer Produktionsumgebung zu bringen. Diese Pipelines sind ein zentraler Bestandteil von Continuous Integration (CI) und Continuous Deployment (CD), zwei Praktiken, die darauf abzielen, Software schneller, zuverlässiger und konsistenter zu entwickeln und bereitzustellen.
Quellcode-Verwaltung (Source Control):
Build-Prozess:
Automatisierte Tests:
Bereitstellung (Deployment):
Monitoring und Feedback:
Diese Pipelines sind somit entscheidend für die moderne Softwareentwicklung, insbesondere in Umgebungen, die auf agile Methoden und DevOps-Praktiken setzen.
Inversion of Control (IoC) ist ein Konzept in der Softwareentwicklung, das sich auf die Steuerung der Flussrichtung eines Programms bezieht. Anstatt dass der Code selbst die Kontrolle über den Ablauf und die Instanziierung von Abhängigkeiten übernimmt, wird diese Kontrolle an ein Framework oder einen Container übergeben. Dies erleichtert die Entkopplung von Komponenten und fördert eine höhere Modularität und Testbarkeit des Codes.
Hier sind einige Schlüsselkonzepte und -prinzipien von IoC:
Abhängigkeitsinjektion (Dependency Injection): Eine der häufigsten Implementierungen von IoC. Bei der Abhängigkeitsinjektion wird eine Komponente nicht selbst instanziiert, sondern sie erhält ihre Abhängigkeiten vom IoC-Container. Es gibt drei Hauptarten der Injektion:
Ereignisgesteuerte Programmierung (Event-driven Programming): Hierbei wird der Ablauf eines Programms durch Ereignisse gesteuert, die von einem Framework oder einem Event-Manager verwaltet werden. Anstatt dass der Code selbst entscheidet, wann bestimmte Aktionen ausgeführt werden, reagiert er auf Ereignisse, die von einem externen Steuerungssystem ausgelöst werden.
Service Locator Pattern: Ein weiteres Muster zur Implementierung von IoC. Ein Service-Locator bietet eine zentrale Stelle, an der Abhängigkeiten aufgelöst werden können. Klassen fragen den Service-Locator nach den benötigten Abhängigkeiten an, anstatt sie selbst zu erstellen.
Aspektorientierte Programmierung (AOP): Hierbei wird die Querschnittsfunktionalität (wie Logging, Transaktionsmanagement) aus dem Hauptanwendungscode herausgenommen und in separate Module (Aspekte) ausgelagert. Der IoC-Container kümmert sich um die Einbindung dieser Aspekte in den Anwendungscode.
Vorteile von IoC:
Ein Beispiel für IoC ist das Spring Framework in Java, das einen IoC-Container bietet, der die Abhängigkeiten der Komponenten verwaltet und injiziert.
Continuous Deployment (CD) ist ein Ansatz in der Softwareentwicklung, bei dem Codeänderungen automatisch in die Produktionsumgebung übertragen werden, nachdem sie den automatisierten Testprozess bestanden haben. Dies bedeutet, dass neue Funktionen, Fehlerbehebungen und andere Änderungen sofort nach erfolgreicher Durchführung von Tests live gehen können. Hier sind die Hauptmerkmale und Vorteile von Continuous Deployment:
Automatisierung: Der gesamte Prozess von der Codeänderung bis zur Produktion ist automatisiert. Dazu gehören das Bauen der Software, das Testen und das Deployment.
Schnelle Bereitstellung: Änderungen werden sofort nach erfolgreichem Testen bereitgestellt, was die Zeit zwischen der Entwicklung und der Nutzung durch die Endbenutzer erheblich verkürzt.
Hohe Qualität und Zuverlässigkeit: Durch den Einsatz umfangreicher automatisierter Tests und Überwachungen wird sichergestellt, dass nur qualitativ hochwertiger und stabiler Code in die Produktion gelangt.
Geringere Risiken: Da Änderungen häufig und in kleinen Inkrementen bereitgestellt werden, sind die Risiken im Vergleich zu großen, seltenen Releases geringer. Fehler können schneller erkannt und behoben werden.
Kundenzufriedenheit: Kunden profitieren schneller von neuen Funktionen und Verbesserungen, was die Zufriedenheit erhöht.
Kontinuierliches Feedback: Entwickler erhalten schneller Feedback zu ihren Änderungen, was die Möglichkeit bietet, Probleme schneller zu identifizieren und zu beheben.
Ein typischer Continuous Deployment-Prozess könnte folgende Schritte umfassen:
Codeänderung: Ein Entwickler macht eine Änderung im Code und pusht diese in ein Versionskontrollsystem (z.B. Git).
Automatisiertes Bauen: Ein Continuous Integration (CI) Server (z.B. Jenkins, CircleCI) zieht den neuesten Code, baut die Anwendung und führt unit tests und integration tests durch.
Automatisiertes Testen: Der Code durchläuft eine Reihe automatisierter Tests, einschließlich Unit-Tests, Integrationstests und möglicherweise End-to-End-Tests.
Bereitstellung: Wenn alle Tests erfolgreich sind, wird der Code automatisch in die Produktionsumgebung übertragen.
Überwachung und Feedback: Nach der Bereitstellung wird die Anwendung überwacht, um sicherzustellen, dass sie korrekt funktioniert. Feedback aus der Produktionsumgebung kann zur weiteren Verbesserung verwendet werden.
Continuous Deployment unterscheidet sich von Continuous Delivery (auch CD genannt), wo der Code ebenfalls regelmäßig und automatisch gebaut und getestet wird, aber eine manuelle Freigabe erforderlich ist, um ihn in die Produktion zu bringen. Continuous Deployment geht einen Schritt weiter und automatisiert auch diesen letzten Schritt.
Continuous Integration (CI) ist eine Praxis im Bereich der Softwareentwicklung, bei der Entwickler regelmäßig ihre Codeänderungen in ein zentrales Repository integrieren. Diese Integration erfolgt häufig, oft mehrere Male am Tag. CI wird durch verschiedene Tools und Techniken unterstützt und bietet mehrere Vorteile für den Entwicklungsprozess. Hier sind die wesentlichen Merkmale und Vorteile von Continuous Integration:
Automatisierte Builds: Sobald Code in das zentrale Repository eingecheckt wird, wird ein automatisierter Build-Prozess gestartet. Dieser Prozess kompiliert den Code und führt grundlegende Tests durch, um sicherzustellen, dass die neuen Änderungen nicht zu Build-Fehlern führen.
Automatisierte Tests: CI-Systeme führen automatisch Tests durch, um sicherzustellen, dass neue Codeänderungen keine bestehenden Funktionen beschädigen. Diese Tests können Unit-Tests, Integrationstests und andere Arten von Tests umfassen.
Kontinuierliches Feedback: Entwickler erhalten schnell Feedback über den Zustand ihres Codes. Bei Fehlern können sie diese sofort beheben, bevor sie zu größeren Problemen führen.
Versionskontrolle: Alle Codeänderungen werden in einem Versionskontrollsystem (wie Git) verwaltet. Dies ermöglicht eine Nachverfolgbarkeit von Änderungen und erleichtert die Zusammenarbeit im Team.
Frühe Fehlererkennung: Durch häufiges Integrieren und Testen des Codes können Fehler frühzeitig erkannt und behoben werden, was die Qualität des Endprodukts verbessert.
Reduzierte Integrationsprobleme: Da der Code regelmäßig integriert wird, treten weniger Konflikte und Integrationsprobleme auf, die ansonsten bei der Zusammenführung großer Codeänderungen entstehen könnten.
Schnellere Entwicklung: CI ermöglicht eine schnellere und effizientere Entwicklung, da Entwickler sofort Feedback zu ihren Änderungen erhalten und Probleme schneller gelöst werden können.
Bessere Codequalität: Durch kontinuierliches Testen und Code-Überprüfung wird die Gesamtqualität des Codes verbessert. Fehler und Bugs können schneller identifiziert und behoben werden.
Erleichterte Zusammenarbeit: CI fördert eine bessere Zusammenarbeit im Team, da alle Entwickler regelmäßig ihren Code integrieren und testen. Dies führt zu einer besseren Synchronisation und Kommunikation innerhalb des Teams.
Es gibt viele Tools, die Continuous Integration unterstützen, darunter:
Durch die Implementierung von Continuous Integration können Entwicklungsteams die Effizienz ihrer Arbeitsabläufe verbessern, die Qualität ihres Codes steigern und letztendlich schneller hochwertige Softwareprodukte liefern.
API-First Development ist ein Ansatz zur Softwareentwicklung, bei dem die API (Application Programming Interface) als erster und zentraler Bestandteil des Entwicklungsprozesses entworfen und implementiert wird. Anstatt die API als nachträglichen Gedanken zu betrachten, steht sie im Mittelpunkt des Entwicklungsprozesses. Dies hat mehrere Vorteile und bestimmte Charakteristika:
Klar definierte Schnittstellen:
Bessere Zusammenarbeit:
Flexibilität:
Wiederverwendbarkeit:
Schnellere Markteinführung:
Verbesserte Wartbarkeit:
API-Spezifikation als erste Stufe:
Design-Dokumentation:
Mocks und Stubs:
Automatisierung:
Tests und Validierung:
OpenAPI/Swagger:
Postman:
API Blueprint:
RAML (RESTful API Modeling Language):
API Platform:
API-Spezifikation erstellen:
openapi: 3.0.0
info:
title: User Management API
version: 1.0.0
paths:
/users:
get:
summary: Retrieve a list of users
responses:
'200':
description: A list of users
content:
application/json:
schema:
type: array
items:
$ref: '#/components/schemas/User'
/users/{id}:
get:
summary: Retrieve a user by ID
parameters:
- name: id
in: path
required: true
schema:
type: string
responses:
'200':
description: A single user
content:
application/json:
schema:
$ref: '#/components/schemas/User'
components:
schemas:
User:
type: object
properties:
id:
type: string
name:
type: string
email:
type: string
API-First Development stellt sicher, dass APIs konsistent, gut dokumentiert und einfach zu integrieren sind, was zu einer effizienteren und kollaborativeren Entwicklungsumgebung führt.