GitHub Actions ist ein Feature von GitHub, mit dem du automatisierte Workflows für deine Softwareprojekte erstellen kannst – direkt im GitHub-Repository.
Du kannst CI/CD-Pipelines (Continuous Integration / Continuous Deployment) aufbauen, z. B.:
🛠️ Code bei jedem Push oder Pull Request builden
🚀 Software automatisch deployen (z. B. auf einen Webserver, in die Cloud, zu DockerHub)
📦 Releases erstellen (z. B. ZIP-Dateien, Versionstags)
🔄 Cronjobs oder geplante Tasks laufen lassen
GitHub Actions basiert auf sogenannten Workflows, die du in einer Datei definierst:
Die Datei heißt z. B. .github/workflows/ci.yml
Sie ist im YAML-Format
Du definierst Events (z. B. push
, pull_request
) und Jobs (z. B. build
, test
)
Jobs bestehen aus Steps, die Befehle oder Aktionen ausführen
name: CI
on: [push]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: '20'
- run: npm install
- run: npm test
Eine Action ist ein einzelner Schritt, den man in einem Workflow ausführt. Es gibt:
Vorgefertigte Actions (z. B. actions/checkout
, setup-node
, upload-artifact
)
Eigene Actions (z. B. Shell-Skripte oder Docker-Container)
Du kannst Actions im GitHub Marketplace finden und nutzen.
Spart manuelle Arbeit
Verbessert Codequalität (durch automatisierte Tests)
Macht Deployments reproduzierbar
Alles direkt in GitHub – kein externer CI-Dienst nötig (wie Jenkins oder Travis CI)
Docker Compose ist ein Werkzeug, mit dem du mehrere Docker-Container als einen einzigen Service definieren und starten kannst. Statt jeden Container einzeln über die Docker-CLI zu starten, kannst du mit Docker Compose eine docker-compose.yml
-Datei schreiben, in der du alle benötigten Dienste (z. B. Datenbank, Webserver, App-Container) deklarierst.
Docker Compose = Projektbeschreibung + Mehrere Container + Ein Befehl zum Starten
docker-compose.yml
version: '3.9'
services:
web:
build: .
ports:
- "5000:5000"
volumes:
- .:/code
redis:
image: "redis:alpine"
In diesem Beispiel:
Ein Container baut die lokale Webanwendung.
Ein zweiter Container nutzt das offizielle Redis-Image.
Beide Container sind miteinander vernetzt.
docker-compose up # Startet alle Container im Vordergrund
docker-compose up -d # Startet im Hintergrund (detached)
docker-compose down # Stoppt und entfernt Container, Netzwerke etc.
✅ Einfaches Setup für Multi-Container-Anwendungen
✅ Alles wird in einer Datei versioniert (z. B. für Git)
✅ Reproduzierbare Entwicklungsumgebungen
✅ Leichtes Hoch- und Runterfahren ganzer Stacks
Lokale Entwicklung mit mehreren Services (z. B. App + DB)
Integrationstests mit vollständigem Stack
Simpler Deployment-Workflow (z. B. über CI/CD)
Ein Headless CMS (Content Management System) ist ein Content-Management-System, bei dem das Backend (die Inhalte und ihre Verwaltung) vom Frontend (der Darstellung für die Nutzer) vollständig getrennt ist.
Backend und Frontend sind gekoppelt.
Die Inhalte werden im System erstellt und direkt als HTML über ein fest integriertes Theme angezeigt.
Vorteil: Alles aus einer Hand.
Nachteil: Eingeschränkte Flexibilität, schwer für Multi-Plattform-Ausgabe (z. B. App + Webseite + Smartwatch).
Nur Backend.
Inhalte werden über eine API (z. B. REST oder GraphQL) bereitgestellt.
Das Frontend (z. B. eine React-Webseite, native App, Digital Signage) holt sich die Inhalte dynamisch.
Vorteil: Sehr flexibel, geeignet für Multi-Channel-Ausspielung.
Nachteil: Frontend muss separat entwickelt werden (mehr Aufwand).
Webseiten mit modernen JavaScript-Frameworks (z. B. React, Next.js, Vue)
Mobile Apps, die denselben Content wie die Website zeigen sollen
Omnichannel-Strategien: Website, App, IoT-Geräte, etc.
Contentful
Strapi
Sanity
Directus
Prismic
Storyblok (Hybrid-Ansatz mit Visual Editor)
Storyblok ist ein benutzerfreundliches, headless Content-Management-System (CMS), das Entwicklern und Marketing-Teams hilft, Inhalte schnell und effizient zu erstellen, zu verwalten und zu veröffentlichen. Es bietet eine visuelle Bearbeitungsoberfläche, die es ermöglicht, Inhalte in Echtzeit zu gestalten, und ist flexibel mit verschiedenen Frameworks und Plattformen kompatibel. Durch seine API-first-Architektur können Inhalte auf jeder digitalen Plattform ausgespielt werden, was es ideal für moderne Web- und App-Entwicklung macht.
Shopware ist ein modulares E-Commerce-System aus Deutschland, mit dem man Online-Shops erstellen und verwalten kann. Es richtet sich sowohl an kleine Händler als auch an große Unternehmen und zeichnet sich durch seine Flexibilität, Skalierbarkeit und moderne Technologie aus.
Hier ein Überblick:
Hersteller: Shopware AG (gegründet 2000 in Deutschland)
Technologie: PHP, Symfony-Framework, API-first-Ansatz
Aktuelle Version: Shopware 6 (seit 2019)
Open Source: Ja, mit kostenpflichtigen Erweiterungen
Headless-Ready: Ja, unterstützt Headless-Commerce über APIs
Produktverwaltung: Varianten, Staffelpreise, Medien, SEO
Vertriebskanäle: Webshop, POS, Social Media, Marktplätze
Content Management: Integriertes CMS (Shopping Experiences)
Zahlung & Versand: Viele Schnittstellen, z. B. PayPal, Klarna
Mehrsprachigkeit & Multi-Currency
B2B- & B2C-Features
App-System & API für Erweiterungen
Startups (kostenfreie Community Edition)
KMU und Mittelstand
Enterprise-Kunden mit individuellen Anforderungen
Besonders beliebt im deutschsprachigen Raum
Made in Germany → DSGVO-konform
Hohe Individualisierbarkeit
Aktives Ökosystem & Community
Skalierbar für wachsende Anforderungen
Design by Contract (DbC) ist ein Konzept aus der Softwareentwicklung, das von Bertrand Meyer eingeführt wurde. Es beschreibt eine Methode zur Sicherstellung der Korrektheit und Zuverlässigkeit von Software, indem Verträge zwischen den verschiedenen Komponenten (z.B. Methoden, Klassen) definiert werden.
Bei DbC wird jede Software-Komponente wie eine Vertragspartei gesehen, die bestimmte Verpflichtungen und Garantien einhält:
Vorbedingungen (Preconditions)
Bedingungen, die erfüllt sein müssen, bevor eine Methode oder Funktion korrekt ausgeführt werden kann.
→ Verantwortung des Aufrufers.
Nachbedingungen (Postconditions)
Bedingungen, die nach der Ausführung garantiert werden.
→ Verantwortung der Methode/Funktion.
Invariant (Klasseninvariante)
Bedingungen, die während der gesamten Lebenszeit eines Objekts wahr bleiben müssen.
→ Verantwortung sowohl der Methode als auch des Aufrufers.
Klare Spezifikation der Verantwortlichkeiten.
Robustere und besser testbare Software.
Fehler werden frühzeitig erkannt (z.B. durch Verletzung des Vertrags).
class BankAccount {
private double balance;
// Invariante: balance >= 0
void withdraw(double amount) {
// Vorbedingung: amount > 0 && amount <= balance
if (amount <= 0 || amount > balance) throw new IllegalArgumentException();
balance -= amount;
// Nachbedingung: balance wurde um amount verringert
}
}
Klare Verträge führen zu weniger Missverständnissen.
Bessere Fehlersuche, da Verstöße gegen Verträge sofort auffallen.
Unterstützt die defensive Programmierung.
Erhöhter Aufwand in der Spezifikation.
Nicht von allen Programmiersprachen direkt unterstützt (z.B. Java, C++ über Assertions, Python mit Decorators; Eiffel unterstützt DbC nativ).
Perl Compatible Regular Expressions (PCRE) sind eine Implementierung von regulären Ausdrücken, die sich an der Syntax und Funktionalität der Programmiersprache Perl orientiert. Sie bieten eine sehr mächtige, flexible und erweiterte Syntax, die über einfache reguläre Ausdrücke hinausgeht.
Perl war eine der ersten Sprachen, die besonders leistungsstarke reguläre Ausdrücke eingeführt hat. Die PCRE-Bibliothek wurde entwickelt, um diese Funktionen auch in anderen Programmiersprachen und Tools verfügbar zu machen – zum Beispiel in:
Python (teilweise, re
-Modul ähnelt PCRE)
JavaScript (mit leichten Abweichungen)
grep-Varianten wie pcregrep
Texteditoren wie VS Code, Sublime Text etc.
✅ Lookahead & Lookbehind:
(?=...)
– positive Lookahead
(?!...)
– negative Lookahead
(?<=...)
– positive Lookbehind
(?<!...)
– negative Lookbehind
✅ Nicht-gierige Quantifizierer:
*?
, +?
, ??
, {m,n}?
✅ Benannte Gruppen:
(?P<name>...)
oder (?<name>...)
✅ Unicode-Support:
\p{L}
für Unicode-Buchstaben usw.
✅ Assertions und Grenzen:
\b
, \B
, \A
, \Z
, \z
✅ Modifikatoren:
(?i)
für case-insensitive
(?m)
für multiline usw.
(?<=\buser\s)\w+
Dieser Ausdruck findet Wörter, die nach "user " stehen (Lookbehind).
PCRE sind die "Deluxe-Version" regulärer Ausdrücke – sie sind leistungsfähig, weit verbreitet und flexibel. Wenn du in einem Tool oder einer Sprache arbeitest, die „PCRE unterstützt“, kannst du dich auf die mächtige Perl-ähnliche Syntax freuen.
„Link Juice“ ist ein Begriff aus der Suchmaschinenoptimierung (SEO) und bezeichnet den Wert oder die Kraft, die ein Hyperlink von einer Webseite auf eine andere überträgt. Diese „Kraft“ beeinflusst, wie gut eine Seite in den Suchmaschinenergebnissen (vor allem bei Google) rankt.
Wenn eine Webseite A auf Webseite B verlinkt, gibt sie etwas von ihrem „Ruf“ oder ihrer Autorität weiter – das ist der „Link Juice“. Je vertrauenswürdiger und themenrelevanter Seite A ist, desto mehr Link Juice wird übertragen.
Autorität der verlinkenden Seite (z. B. eine große Nachrichtenseite vs. ein kleines Blog)
Anzahl der ausgehenden Links: Je mehr Links auf einer Seite sind, desto weniger „Juice“ bekommt jeder einzelne.
Follow vs. Nofollow: Nur „dofollow“-Links übertragen Link Juice; „nofollow“-Links (z. B. mit rel="nofollow"
) tun das in der Regel nicht.
Platzierung des Links: Ein Link im Haupttext ist stärker als einer in der Fußzeile oder Seitenleiste.
Relevanz: Ein Link von einer thematisch passenden Seite zählt mehr.
Ein Backlink von Wikipedia auf deine Website gibt dir enorm viel Link Juice – Google wertet das als Zeichen von Vertrauenswürdigkeit. Ein Link von einer unbekannten oder spammy Seite dagegen bringt wenig bis gar nichts oder kann sogar schaden.
SVG steht für Scalable Vector Graphics und ist ein XML-basiertes Dateiformat, das verwendet wird, um 2D-Grafiken zu beschreiben. Es ermöglicht die Darstellung von Vektorgrafiken, die sich ohne Qualitätsverlust skalieren lassen. SVG wird häufig in Webdesigns verwendet, da es eine hohe Auflösung bei jeder Größe bietet und leicht in Webseiten integriert werden kann.
Ein paar wichtige Merkmale von SVG:
Vektorbasiert: SVG-Grafiken bestehen aus Linien, Kurven und Formen, die mathematisch definiert sind, im Gegensatz zu Rastergrafiken (wie JPEG oder PNG), die aus Pixeln bestehen.
Skalierbarkeit: Da SVG-Grafiken auf Vektoren basieren, können sie ohne Verlust der Bildqualität auf jede Größe skaliert werden, was sie besonders für responsive Designs geeignet macht.
Interaktivität und Animation: SVG unterstützt Interaktivität (z. B. durch JavaScript) und Animationen (z. B. durch CSS oder SMIL).
Suchmaschinenfreundlich: Der Inhalt einer SVG-Datei ist textbasiert und kann von Suchmaschinen indexiert werden, was SEO-Vorteile bieten kann.
Kompatibilität: SVG-Dateien können in den meisten modernen Webbrowsern angezeigt werden und eignen sich hervorragend für Logos, Icons und Diagramme.
Der "Happy Path" (auch "Happy Flow" genannt) bezeichnet in der Softwareentwicklung oder im Testing den idealen Ablauf eines Prozesses oder Programms, bei dem alles wie geplant funktioniert, keine Fehler auftreten und alle Eingaben gültig sind.
Wenn du z. B. ein Online-Formular zur Registrierung entwickelst, sieht der Happy Path so aus:
Der Benutzer gibt alle Daten korrekt ein (z. B. gültige E-Mail, sicheres Passwort).
Er klickt auf „Registrieren“.
Das System erstellt erfolgreich einen Account.
Der Benutzer wird zur Willkommensseite weitergeleitet.
➡️ Keine Validierungsfehler, keine Serverprobleme, kein unerwartetes Verhalten.
Erstes Testziel: Beim Entwickeln oder Testen schaut man sich oft zuerst den Happy Path an, um sicherzugehen, dass das Grundgerüst funktioniert.
Basis für Use Cases: In der Dokumentation von Anforderungen oder Prozessen ist der Happy Path oft der zentrale Anwendungsfall, bevor man Sonderfälle beschreibt.
Abgrenzung zu Edge Cases / Error Paths: Alles, was vom Happy Path abweicht (z. B. leeres Passwortfeld, Serverfehler), gehört zu den „unhappy paths“ oder „alternate flows“.